MULTIPOINT™ PACING:
A COLLECTION OF CASE STUDIES

Highlighting Electrical and Hemodynamic Changes in Patients Undergoing Cardiac Resynchronization Therapy
TABLE OF CONTENTS
ELECTRICAL

04 Significant QRS Duration Reduction and Maximal dP/dt Achieved only by MultiPoint™ Pacing

11 Implant Findings and Optimization Considerations

HEMODYNAMIC

13 How Will This New Technology Influence Velocity Time Integral?

16 Maximum LV dP/dtmax Achieved with MultiPoint™ Pacing as Measured by Non-invasive Means in a Terminal Heart Failure Patient

23 Can MultiPoint™ Pacing Improve an Echo-Optimized Patient?

26 An Opticare-QLV Case Study: Pressure-Volume Loops to Optimize CRT with a Quadripolar (Quartet Lead) Left Ventricular Lead

30 MultiPoint™ Pacing Cardiac Resynchronization Therapy Improves Hemodynamic Outcomes

36 LV Dyssynchrony and Hemodynamic Improvement with MultiPoint™ Pacing after Three Months. An Anatomical Approach

40 Optimization of Cardiac Pacing Outcomes by use of MultiPoint™ Pacing Cardiac Resynchronization Therapy (CRT) Compared with Conventional CRT

45 Improving the Hemodynamic Response to Cardiac Resynchronization Therapy while Eliminating Phrenic Nerve Stimulation in a Patient with Non-ischemic Cardiomyopathy
SIGNIFICANT QRS DURATION REDUCTION AND MAXIMAL DP/DT ACHIEVED ONLY BY MULTIPOINT™ PACING

Katherine Fan, M.D.
Grantham Hospital, Hong Kong
MULTIPOINT™ PACING CASE STUDY

ELECTRICAL CHANGES IN A PATIENT UNDERGOING CARDIAC RESYNCHRONIZATION THERAPY

46-YEAR-OLD MALE WITH MULTIPLE COMORBIDITIES

LVdP/dt max : 1135 mmHg
NYHA: CLASS III–IV
EF: 30%
RBBB, QRS: 171 ms

PRODUCT IMPLANTED
QUADRA ASSURA MP™ CRT-D

MULTIPOINT™ PACING WAS TURNED ON IMMEDIATELY

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>AV pacing</th>
<th>LV pacing (M2-P4)</th>
<th>LV pacing (M3-M2)</th>
<th>RV pacing (LV: M2-P4)</th>
<th>RV pacing (LV: M3-M2)</th>
<th>MultiPoint™ pacing technology (LV: M2-M2 / M2-P4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QRSd</td>
<td>171 ms</td>
<td>215 ms</td>
<td>206 ms</td>
<td>209 ms</td>
<td>143 ms</td>
<td>112 ms</td>
<td>125 ms</td>
</tr>
<tr>
<td>LV dP/dt max</td>
<td>1135 mmHg</td>
<td>951 mmHg</td>
<td>1033 mmHg</td>
<td>1046 mmHg</td>
<td>1079 mmHg</td>
<td>1117 mmHg</td>
<td>1119 mmHg</td>
</tr>
</tbody>
</table>

Table 1. Outcome of LV dP/dt max with various pacing configurations
CLINICAL HISTORY
A 46-year-old male with ischemic cardiomyopathy was referred for further management of his advanced heart failure. Past medical history revealed extensive antero-septal ST-segment elevation myocardial infarction (STEMI) in March 2013. He also had hypertension and hyperlipidemia and was an ex-smoker. A coronary angiogram in 2013 showed triple vessel disease with percutaneous coronary intervention (PCI) performed to the left anterior descending (LAD) with a drug-eluting stent (DES). Other findings showed small left circumflex (LCX) vessel, blocked obtuse marginal branch and RCA with chronic total occlusion. The patient required repeated heart failure hospitalizations (NYHA Class III to IV) since May 2014. His ECG at baseline showed sinus rhythm with RBBB pattern (QRS duration (QRSd) 171 ms).

PROCEDURE
The patient underwent cardiac resynchronization therapy defibrillator (CRT-D) implantation for primary prevention. The quadripolar left ventricular (LV) lead was positioned in the distal lateral branch. Before the CRT-D generator was connected to the implanted leads (RA: 1882TC/52, RV: 7121Q/58 and LV: 1458Q/86), we collected ECG morphologies and acute hemodynamic measurements by LV dP/dtmax for 1) Baseline (APVS), 2) RV pacing, 3) LV pacing with different feasible bipolar configurations, including conventional biventricular pacing (D1 – M2); the base rate was programmed to DDD 80 bpm, AV interval 120 ms. Specific adaptor connections mimicking device built-in Multipoint™ Pacing algorithms were tested (Figure 1a-c).

Baseline (AAI 90 bpm) was compared with different cardiac resynchronization therapy (CRT) pacing configurations.

RESULTS
Implantation included the following acute findings:
- Despite D1 with the most delayed conduction time in RV paced-LV sensed mode, significant phrenic nerve stimulation (PNS) was found in all D1 related vectors.
- M3-M2 stimulation resulted in better LV dP/dtmax vectors measurement and more significant QRSd reduction than the M2-P4 stimulation.
- Compared to conventional bipolar LV lead (D1-M2), the quadripolar lead can provide more options in optimization of CRT therapy. The physician could seek further alternative optimal pacing configuration (M3-M2 in this case) for the patient without need of repositioning the lead should PNS occur.

Results with MultiPoint™ Pacing Technology
When comparing with baseline QRSd (171 ms) and other quadripolar configurations in biventricular pacing (215 ms in LV M2-P4 and 162 ms in LV M3-M2), MultiPoint Pacing with M3-M2+M2-P4 configurations resulted in significant reduction in QRSd (128 ms) (Figure 2).

Furthermore, the LV dP/dtmax measurement showed MultiPoint Pacing mode (1139 mmHg) a further 6% increase when compared with conventional bipolar configurations (1079 mmHg). The incremental benefits of both electrical and hemodynamic resynchronizations were achieved in this case (Table 1).

Figure 3 showed the following:
- Latest activation was seen at D1 (145 ms) during RV paced-LV sensed mode but PNS was present.
- Other features used to enhance patient care VectSelect Quartet™ programmable LV pulse configuration and QuickOpt™ timing cycle optimization were also applied in this case (Figure 3).
- Activation in M2 (119 ms) and M3 (113 ms) were the next most delayed.
- As QRS duration reduction and increase in LV dP/dtmax with M3 to M2 was better than M2 to P4, M3-M2 was selected.
- QuickOpt™ optimization was performed and applied with recommended settings: PAV/SAV: 170 ms/120 ms, RV First 10 ms.
Regarding selecting predictor of CRT-induced positive remodeling, a paradox of QRS duration reduction versus acute hemodynamic measurement exists. Single site left ventricular pacing (LVP) has been shown to be as beneficial as biventricular pacing (BiVP) for LV systolic dysfunction in acute hemodynamic studies and in long-term follow-up studies despite no reduction in QRS duration with isolated LV pacing (in the absence of fusion with intrinsic rhythm). On the contrary, CRT responders showed significant reduction in QRS duration directly after initiation of CRT and maintained at long-term follow-up. Restoration of electrical synchronization induced by CRT can be reflected by reduction of QRSd. Furthermore, additional hemodynamic benefit can be achieved with fusion beats reflected by significant reduction of QRSd. In this case, MultiPoint pacing of LV activation allowed achievement of both narrowest QRS width and the maximum LV dP/dtmax measurement when compared with conventional BiVP, resolving the paradox altogether.

The use of a specific adaptor allows the reproduction capability of MultiPoint pacing within the generator. During implantation, acute hemodynamic and ECG analysis can be performed, thus facilitating the implanting physician’s decision to implant a CRT-D with the MultiPoint pacing programming option.

LIMITATION

The use of a specific adaptor and connections produced with BiVP and simulated MultiPoint pacing mode in this case were all paced simultaneously without AV and VV optimization for LV dP/dtmax and QRSd measurement (i.e., DDD mode). It can be postulated that the actual results in LV dP/dtmax and QRSd would be better in a MultiPoint pacing device with QuickOpt™ optimization, RV-LV conduction test and programmability of LV1 and LV2 delay.

Table 1. Outcome of LV dP/dt\(_{\text{max}}\) with various pacing configurations

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>RV pacing</th>
<th>LV pacing (M2-P4)</th>
<th>LV pacing (M3-M2)</th>
<th>BiV pacing (LV: M2-P4)</th>
<th>BiV pacing (LV: M3-M2)</th>
<th>MultiPoint™ pacing technology (LV: M3-M2 + M2-P4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QRSd</td>
<td>171 ms</td>
<td>215 ms</td>
<td>206 ms</td>
<td>209 ms</td>
<td>143 ms</td>
<td>162 ms</td>
<td>125 ms</td>
</tr>
<tr>
<td>LV dP/dt(_{\text{max}})</td>
<td>1135 mmHg</td>
<td>951 mmHg</td>
<td>1038 mmHg</td>
<td>1046 mmHg</td>
<td>1079 mmHg</td>
<td>1117 mmHg</td>
<td>1139 mmHg</td>
</tr>
</tbody>
</table>

CONCLUSION

Figure 2. ECGs morphologies obtained with different pacing configurations. MultiPoint™ pacing (LV: M3-M2 + M2-P4) showed the most significant QRSd reduction.

Figure 3.

IMPLANT FINDINGS AND OPTIMIZATION

Dr. A. Kloppe, M.D.
Berufsgenossenschaftliches Universitätsklinikum
Bergmannsheil GmbH, Bochum

Dr. D. Mijic, M.D.
Märkische Kliniken GmbH, Lüdenscheid
MULTIPOINT™ PACING CASE STUDY
ELECTRICAL CHANGES IN A PATIENT UNDERGOING CARDIAC RESYNCHRONIZATION THERAPY

74-YEAR-OLD FEMALE
QRS: 180 MS
EF: 17%

75-YEAR-OLD FEMALE
QRS: 150 MS
EF: 35%

73-YEAR-OLD MALE
QRS: 160 MS
EF: 33%

PRODUCT IMPLANTED
QUADRA ASSURA MP™ CRT-D

MULTIPOINT™ PACING WAS TURNED ON IMMEDIATELY

AVERAGE EFFECT OF SSP AND MP ON DP/DT COMPARED TO INTRINSIC IN ALL PATIENTS

AVERAGE QRS WIDTH FOR ALL PATIENTS

ELECTRICAL CASE STUDY
INTRODUCTION

In recent years, cardiac resynchronization therapy (CRT) has seen many changes. One of the most interesting occurred in 2009 with the introduction of the quadripolar technology for left ventricular leads, which reduced the occurrence of common therapy problems such as phrenic nerve stimulation and high thresholds to a historic minimum. Even though quadripolar leads allow a more individualized CRT optimization, response to CRT is inadequate and unpredictable. A new technology in pacing for quadripolar systems now allows an additional stimulation vector (MultiPoint Pacing) added to the standard quadripolar left ventricular single-site pacing. This results in a double LV-stimulation per cardiac cycle. The two stimulation vectors can be chosen from the 10 vectors available in the quadripolar systems. Presented here are three cases of a recent MultiPoint Pacing implantation with an acute hemodynamic assessment of contractility via intracardiac LV dP/dt max measurement.

METHODS

All patients were implanted with a quadripolar CRT-D (Quadra Assura MP™ CRT-D, Abbott) with MultiPoint pacing capability. After the implantation of the CRT-D was finished, a pressure wire (PressureWire™ FFR measurement system, Abbott) was placed in the LV cavity over a standard multipurpose catheter. The dP/dt max was assessed using the PhysioMon™ software (Abbott). The patients did not receive any sedative or analgesic agents and the measurement was performed with emphasis on a quiet and undisturbed environment to limit external influences on the dP/dt max. A baseline unpaced ECG in sinus rhythm (SR) was recorded. To allow comparison between different patients, a protocol was developed to standardize programming and measurements. The AV-time was optimized using an ECG-based method. For the conventional BiV stimulation, the VV-delay was programmed to simultaneous. The delay of the two MultiPoint pacing pulses (LV1/LV2/RV) was set to 5 ms between LV1 and LV2 and 15 ms between LV2 and RV. All stimulation vectors (Baseline, BiV and MultiPoint pacing) were tested in a random order protocol.

Each vector was evaluated in the same way. The output was programmed 2 V above the measured threshold. At least 15 sec of a stable rhythm were recorded. Premature ventricular complexes (PVCs) were manually identified and excluded from the analysis. For every configuration, a 12-lead ECG was recorded.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Female</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Age</td>
<td>74</td>
<td>75</td>
<td>73</td>
</tr>
<tr>
<td>Etiology</td>
<td>DCM</td>
<td>DCM</td>
<td>CAD</td>
</tr>
<tr>
<td>QRS-width (ms)</td>
<td>180</td>
<td>160</td>
<td>150</td>
</tr>
<tr>
<td>QRS Morphology</td>
<td>LBBB</td>
<td>LBBB</td>
<td>LBBB</td>
</tr>
<tr>
<td>EF (%)</td>
<td>17</td>
<td>33</td>
<td>35</td>
</tr>
<tr>
<td>AV-Time (ms)</td>
<td>180</td>
<td>160</td>
<td>170</td>
</tr>
<tr>
<td>Atrial rhythm</td>
<td>SR</td>
<td>SR</td>
<td>paroxysmal AF/SR at implant</td>
</tr>
</tbody>
</table>

PATIENT HISTORY

All patients were on stable medication for heart failure. Patient characteristics are stated in Table 1.

IMPLEMENTATION AND LEAD PLACEMENT

Implantation of the device and the leads with standard techniques was successful with good threshold and impedances. The LV lead was implanted in a lateral/posterolateral position (see Figures 1 to 3).

Figure 1: Patient 1 (LAO 45°)

Figure 2: Patient 2 (LAO 40°)

Figure 3: Patient 3 (LAO 41°)
MEASUREMENTS AND MULTIPONT™ PACING CONFIGURATION

Graphs 1 to 3 show the results that the LV dP/dt\textsubscript{max} measurements yielded.

Graph 1

Graph 2

Graph 3

The average effect of BiV vs. MultiPoint pacing stimulation over all patients is summarized in Graph 4.

Graph 4

Graph 5

CONCLUSION

In patients with an indication for CRT, MultiPoint pacing reduces the average QRS width. In comparison with single-site pacing and standard biventricular pacing, MultiPoint pacing may potentially show an additional increase of acute LV dP/dt\textsubscript{max} measurements. This indicates a positive effect on acute inotropic contraction and may potentially alleviate the rate of non-responders.

HOW WILL THIS NEW TECHNOLOGY INFLUENCE VELOCITY TIME INTEGRAL?

Massimo Giammaria, M.D.
Maria Vittoria Hospital, Torino, Italy
74-YEAR-OLD MALE WITH NYHA CLASS III, LEFT BUNDLE BRANCH BLOCK (LBBB)

VELOCITY TIME INTEGRAL: 22 CM

PRODUCT IMPLANTED QUADRA ASSURA MP™ CRT-D

MULTIPOINT™ PACING WAS TURNED ON IMMEDIATELY

VELOCITY TIME INTEGRAL: 38% ACUTE IMPROVEMENT AS COMPARED TO TRADITIONAL BIV PACING

* AT 6 MONTHS THE VTI IN TRADITIONAL IMPROVED TO ALMOST AS MUCH AS THE MULTIPOINT™ PACING SITE
PATIENT HISTORY
A 74-year-old male presented with NYHA Class III, left bundle branch block (LBBB), EF 28%, QRS width 148 msec, velocity time integral (VTI) at 22 cm.

The aim of this case was to evaluate the influence of MultiPoint™ pacing on VTI with acute echocardiographic testing at baseline, after implant and after 6 months.

PROCEDURE
After CRT implantation and at 6 months of follow-up, an echocardiographic test was performed measuring mean VTI (over three tests) for each configuration tested. The configurations tested were distal biventricular (D1-RVCoil) and four different MultiPoint pacing configurations (see Table 1). After the implant, the device was permanently programmed in BiV pacing mode.

RESULTS
In acute tests at baseline, VTI with all MultiPoint pacing configurations was always better than in BiV configurations, and the best value was 28 cm (best improvement over the VTI with conventional BiV pacing: Delta = +38%). Only after 6 months in BiV pacing mode, the VTI increased at a value comparable to the acute MultiPoint pacing VTI value, as well. At 6 months, MultiPoint pacing mode was tested again and the VTI was found to be greater than VTI in BiV mode (29 cm, see Figure 1).

BiV pacing increased VTI after 6 months. With MultiPoint pacing, pacing increased VTI immediately after the implant (in acute).

CONCLUSION
Traditional CRT is an established therapy which provides clinical benefit in a majority of patients. However, our case study has shown promising results of the acute impact of MPP on VTI.

In this case, the same improvement in VTI was obtained with acute MultiPoint pacing tests 6 months in advance; also, a better result at 6 months follow-up was shown.

<table>
<thead>
<tr>
<th>Pacing Configurations</th>
<th>Delays V-V [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiV: D1-RV Coil</td>
<td>0</td>
</tr>
<tr>
<td>MultiPoint pacing: M3-P4; D1-RV Coi</td>
<td>5-5</td>
</tr>
<tr>
<td>MultiPoint pacing: M3-P4; D1-RV Coi</td>
<td>20-5</td>
</tr>
<tr>
<td>MultiPoint pacing: D1-RV Coi; M3-P4</td>
<td>20-5</td>
</tr>
<tr>
<td>MultiPoint pacing: D1-RV Coi; M3-P4</td>
<td>5-5</td>
</tr>
</tbody>
</table>

Figure 1. Average of VTI in different pacing configurations
MAXIMUM LV DP/DT$_{\text{MAX}}$ ACHIEVED WITH MULTIPOINT™ PACING AS MEASURED BY NON-INVASIVE MEANS IN A TERMINAL HEART FAILURE PATIENT

Katherine Fan, M.D.
Grantham Hospital, Aberdeen, Hong Kong
HEMODYNAMIC CASE STUDY

56-YEAR-OLD MALE WITH MULTIPLE COMORBIDITIES

NYHA CLASS IV
LVDD/SD 9.0/8.7 CM
EF: 8%

PRODUCTS IMPLANTED
QUADRA ASSURA MP™ CRT-D
QUARTET™ QUADRIPOLAR LV LEAD

1 MONTH

MULTIPOINT™ PACING WAS TURNED ON

EF: 15%

6 MONTHS

NYHA CLASS II
LVDD/SD 8.3/7.4 CM
EF: 24%

SIX-MONTH POST-IMPLANT WITH MULTIPOINT™ PACING THERAPY

MULTIPOINT™ PACING CASE STUDY
HEMODYNAMIC CHANGES IN A PATIENT UNDERGOING CARDIAC RESYNCHRONIZATION THERAPY
PATIENT HISTORY

A 56-year-old man with advanced heart failure was initially referred for consideration of heart transplantation. He presented with repeated heart failure hospitalization since the beginning of 2014 and continued to deteriorate despite best-tolerated optimal medical therapy (NYHA Class IV ambulatory).

The patient’s detailed medical history revealed multiple co-morbidities, including a history of Crohn’s disease and Behçet syndrome with severe aortitis. He has a medical history of Crohn’s disease and Behçet syndrome with severe aortitis. He underwent prosthetic aortic valve replacement (AVR) and mitral valvuloplasty in 2006 for severe aortic and mitral regurgitation. Due to recurrent infective endocarditis, he required lifelong clindamycin treatment. Other significant co-morbidities included renal cell carcinoma with left nephrectomy performed in 2005. MRI of the brain showed multiple old infarcts.

Taking into account the above medical history, he was considered neither a suitable candidate for heart transplant nor an implantable left ventricular assist device (LVAD) recipient. After much detailed discussion, cardiac resynchronization therapy (CRT) was offered as a last resort for him and a special effort was made to ensure the best possible CRT programming and optimization for this desperate patient.

PROCEDURE

The patient’s baseline characteristics included the following:

1. ECG: Sinus rhythm with LBBB pattern (QRS duration 225 ms)
2. Echocardiography: Markedly dilated left ventricle (LV) with globally impaired contraction (LVd/sd was 9.0/8.7 cm, ejection fraction 8%), moderate mitral regurgitation, AV prosthesis functioning with no paravalvular leakage seen

The patient underwent successful CRT-D implantation (Quadra Assura MP™ CRT-D, Abbott) with LV quadripolar lead (Quartet™ Quadripolar LV Lead 1458Q/86, Abbott) positioned in coronary sinus lateral branch in January 2015 (Figures 1a and 1b).

Acute direct invasive hemodynamic measurements of LV dP/dt\text{max} could not be performed during the procedure due to the presence of mechanical aortic valve prosthesis. Instead, both acute data during implantation and subsequent chronic hemodynamic data were collected by using Nexfin™ hemodynamic monitoring system (Edwards Lifesciences) (Figure 2). The result of the dP/dt\text{max} by Nexfin system measured during implantation is shown in Table 1.

Other additional features utilized for further optimization of device programming (all from Abbott) are shown in Figure 3:

1. QuickOpt™ timing cycle optimization
2. VectSelect™ programmable LV pulse configuration
3. RV-LV conduction time measurement
4. DeFT Response™ technology

In view of markedly dilated LV, MultiPoint™ Pacing (Abbott) was not turned on until one month follow-up when the final position of the LV lead was fixed and stabilized. We repeated the echocardiogram at one month post-conventional biventricular pacing, three and six months after MultiPoint™ Pacing was programmed at best selected configurations as guided by dP/dt\text{max}.
A simple, noninvasive approach to monitoring key hemodynamic parameters.

- Stroke Volume (SV)
- Stroke Volume Variation (SVV)
- Cardiac Output (CO)
- Systemic Vascular Resistance (SVR)
- Continuous Blood Pressure (cBP)

Cross-section of cuff application.

To accurately mirror arterial line output, real-time finger pressure measurement is performed 1000 times per second utilizing the volume clamp method.

Figure 3. Measurement of RV-LV conduction and QuickOpt™ optimization for recommendations of MultiPoint™ Pacing setting.

Table 1. Results of LV dP/dt_{max} measurement by Nexfin™ system during implant.

<table>
<thead>
<tr>
<th>Types of measurement</th>
<th>Mode of Pacing</th>
<th>dP/dt_{max} Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>ApVs</td>
<td>856</td>
</tr>
<tr>
<td>RV pacing only</td>
<td>ApRVP</td>
<td>891</td>
</tr>
<tr>
<td>LV pacing only</td>
<td>ApLVp</td>
<td>1107</td>
</tr>
<tr>
<td>LV pacing D1 to M2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi-V pacing with nominal setting</td>
<td>LVP: D1 to M2</td>
<td>ApBiVp 1133</td>
</tr>
<tr>
<td></td>
<td>PAV: 140 ms/SAV: 90 ms/Simultaneously</td>
<td></td>
</tr>
<tr>
<td>Bi-V pacing with QuickOpt™ optimization</td>
<td>LVP: D1 to M2</td>
<td>ApBiVp 1126</td>
</tr>
<tr>
<td></td>
<td>PAV 140 ms/SAV 90 ms/ LV first 65 ms</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Measurement of dP/dt_{max} by Nexfin™ system one-month follow-up.

<table>
<thead>
<tr>
<th>Mode of pacing</th>
<th>dP/dt_{max} measurement (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MultiPoint™ Pacing</td>
<td>LV1 - LV2 Delay: 5 ms</td>
</tr>
<tr>
<td></td>
<td>LV2 - RV Delay: 30 ms</td>
</tr>
<tr>
<td></td>
<td>1220</td>
</tr>
<tr>
<td></td>
<td>LV1 - LV2 Delay: 10 ms</td>
</tr>
<tr>
<td></td>
<td>LV2 - RV Delay: 25 ms</td>
</tr>
<tr>
<td></td>
<td>1124</td>
</tr>
<tr>
<td></td>
<td>LV1 - LV2 Delay: 15 ms</td>
</tr>
<tr>
<td></td>
<td>LV2 - RV Delay: 20 ms</td>
</tr>
<tr>
<td></td>
<td>1161</td>
</tr>
<tr>
<td></td>
<td>LV1 - LV2 Delay: 20 ms</td>
</tr>
<tr>
<td></td>
<td>LV2 - RV Delay: 15 ms</td>
</tr>
<tr>
<td></td>
<td>1209</td>
</tr>
<tr>
<td></td>
<td>LV1 - LV2 Delay: 25 ms</td>
</tr>
<tr>
<td></td>
<td>LV2 - RV Delay: 10 ms</td>
</tr>
<tr>
<td></td>
<td>1262</td>
</tr>
<tr>
<td></td>
<td>LV1 - LV2 Delay: 30 ms</td>
</tr>
<tr>
<td></td>
<td>LV2 - RV Delay: 5 ms</td>
</tr>
<tr>
<td></td>
<td>1273</td>
</tr>
</tbody>
</table>
RESULTS
The patient was discharged home with CRT pacing under conventional biventricular pacing configuration, namely PAV 140 ms/SAV 90 ms with LV first 65 ms by QuickOpt™ optimization, and quadripolar LV lead vector of D1-P4 since this configuration had the lowest capture threshold without phrenic nerve stimulation. His ECGs at baseline and post CRT implantation were showed in Figures 4a and 4b.

The patient returned at one month post-implantation and was reassessed with an echocardiogram (LVdd/Sd 9.3/8.6cm, EF 15%) and underwent repeat cardiac resynchronization therapy optimization using Nexfin™ continuous hemodynamic monitoring system as guidance (Figures 5a and 5b). Due to non-invasiveness of Nexfin™ system, we devised a more detailed study by testing various combinations of MultiPoint™ Pacing programming in order to identify the best cardiac output with maximum dP/dt_max. In this case, the best MultiPoint™ Pacing configuration was LV1(M2-P4) to LV2(M3-M2): 30 ms and LV2(M3-M2) to RV 5 ms as shown in Table 2. His latest echocardiogram performed six months post-implant showed significant remodeling effects (LVdd/sd 8.3/7.4 cm, EF 24%). A comparison of his chest X-rays before CRT-D implantation and at six months was shown in Figures 6a and 6b showing evidence of significant reduction in cardiomegaly. Clinically, the patient has significant improvement in exercise tolerance (NYHA Class II) during subsequent follow-ups.
DISCUSSION

Cardiac resynchronization therapy has been shown to improve exercise capacity and quality of life and to reduce heart failure hospitalizations and mortality in patients with NYHA Class III and IV heart failure. In randomized studies, the number of NYHA Class IV heart failure patients enrolled has been very low. Many NYHA Class IV patients are still considered unsuitable for survival studies and have been systematically excluded from clinical trials because of the expectation of a much shortened lifespan. The COMPANION trial's sub-analysis of NYHA Class IV patients demonstrated that CRT-P and CRT-D improve only the combined endpoint of time to all-cause mortality and hospitalizations in ambulatory NYHA Class IV patients but could not show a benefit on survival.

In reality, the line between NYHA classes is not distinct and determination of disease severity in heart failure requires a wide range of clinical, biochemical and functional parameters. As a result, universally accepted and definable measures are still lacking. Furthermore, many of these patients are ambulatory but require repeated hospitalizations with resource-consuming treatments, and neither heart transplant nor implantation of assist devices are appropriate treatment for them. The patient reported here illustrated the actual reality case in which carefully titrated MultiPoint™ Pacing therapy allowed significant reverse remodeling in an otherwise desperate patient with end-stage heart failure, which we encountered other than those patients included and reported in large randomized clinical survival studies.

Invasive acute hemodynamic response by measuring dP/dt\textsubscript{max} to guide LV lead implantation predicts chronic remodeling in patients undergoing CRT. This was contraindicated in this patient with mechanical aortic valve prosthesis and thus we resorted to use an alternative non-invasive hemodynamic monitor Nexfin™ system as a guide to clinical decisions for guiding MultiPoint Pacing therapy for this patient. In fact, due to its non-invasive nature, future refinement of MultiPoint Pacing programming during short- and long-term follow-ups becomes an added bonus.

The measurement of cardiac output (CO) has been traditionally limited to critically ill patients in the intensive care unit. However, with an increasing number of heart failure patients undergoing device therapy such as CRT, goal-directed therapy of maximizing CO and dP/dt\textsubscript{max} values in acute setting and long-term management guided by non-invasive manner is desirable. The recently introduced Nexfin™ monitoring system is a completely non-invasive system requiring only the use of pneumatic finger cuff, without the insertion of any intravascular lines. It consists of a model-based method that provides beat-to-beat measurement of CO by analysis of the non-invasive finger arterial blood pressure trace, which is measured continuously by the use of an inflatable finger cuff. Stroke volume is determined by dividing the pulsatile systolic area of each beat by impedance, which is estimated by the device based on patient characteristics.

CONCLUSION

In addition to a novel and innovative approach at the optimization of therapy using the Nexfin system, this case study reflects a significant clinical improvement with MultiPoint Pacing in the conversion of a hemodynamically unstable NYHA class IV heart failure with multiple comorbidities, who was previously rejected for advanced heart failure treatments.

CAN MULTIPOINT™ PACING IMPROVE AN ECHO-OPTIMIZED PATIENT?

T. Smilde, M.D.
Treant Hospital, Emmen, the Netherlands
54-YEAR-OLD MALE WITH BIFASCICULAR BLOCK

EF: 27%

PRODUCT IMPLANTED
QUADRA ASSURA MP™ CRT-D
AV DELAY WAS OPTIMIZED
VTI = 28.21 CM

MULTIPOINT™ PACING WAS TURNED ON
VTI = 30.10 CM

EF: 32%
HEMODYNAMIC

CASE STUDY

CONCLUSION

- AV timing of 200 msec was optimal; this was the first series of measurements before starting the VV timing.

- LV 20 msec before RV was the optimal echo optimization.

- MultiPoint™ Pacing was optimized when using LV1-LV2 (Electrode 3 - Electrode 2) and LV2-RV both with 10 msec delays.

- Ejection fraction improvement was from 26% to 32%.

- When the optimization was done, lead measurements and sensing were stabilized.

- Echo optimizations performed by experienced physicians and technicians is standard protocol in this hospital, but MultiPoint Pacing provided a better patient outcome in this specific case study.

CLINICAL HISTORY

- 54-year-old male

- February 2014: Complaints of dyspnea

- March 2014: ECG showed bifascicular block

- April 2014: Echocardiogram showed a dilated left ventricular ejection fraction (LVEF) 46%

- June 2014: MRI showed LVEF 27%

- July 2014: Coronary angiogram (CAG) with normal coronary arteries

PROCEDURE

November 2014: Implant of an Abbott Quadra Assura™ CRT-D with MultiPoint™ Pacing technology. The implant procedure was uncomplicated. A nice posterolateral vein was found and a Quartet™ lead was placed.

Measurements and Device Parameters

- Optimal VV timing with echo achieved best results when pacing LV 20 msec before RV.

- Initial velocity time integral (VTI) was 26.6 cm (Figure 1); after the echo optimization, VTI increased to 28.2 cm (Figure 2).

- Device was further optimized with MultiPoint™ Pacing based on the site of latest LV activation (RV pace to LV sense).
 - Electrode 1: 201 msec delay
 - Electrode 2: 209 msec delay
 - Electrode 3: 217 msec, which has the latest activation point
 - Electrode 4: 201 msec delay but with high threshold

- VTI was measured at different MultiPoint™ Pacing settings, with the largest measurement (30.1 cm) corresponding to MPP using electrodes 3 and 2 (LV1-LV2) with LV1-LV2 and LV2-RV delays of 10 msec (Figure 3).

- Output settings were right atrium 2.0 V and both RV and LV 1.5 V by 0.5 msec.

Figure 1. VTI initial 26.63 cm

Figure 2. VTI optimal 28.21 cm

Figure 3. VTI optimal with MultiPoint™ pacing 30.10 cm

CONCLUSION

- AV timing of 200 msec was optimal; this was the first series of measurements before starting the VV timing.

- LV 20 msec before RV was the optimal echo optimization.

- MultiPoint™ Pacing was optimized when using LV1-LV2 (Electrode 3 - Electrode 2) and LV2-RV both with 10 msec delays.

- Ejection fraction improvement was from 26% to 32%.

- When the optimization was done, lead measurements and sensing were stabilized.

- Echo optimizations performed by experienced physicians and technicians is standard protocol in this hospital, but MultiPoint Pacing provided a better patient outcome in this specific case study.
AN OPTICARE-QLV CASE STUDY: PRESSURE-VOLUME LOOPS TO OPTIMIZE CRT WITH A QUADRIPOolar (QUARTET LEAD) LEFT VENTRICULAR LEAD

W.M. van Everdingen, M.D.
A.T. Tuinenburg, M.D.
M. Meine, M.D.
MULTIPOINT™ PACING CASE STUDY

HEMODYNAMIC CHANGES IN A PATIENT UNDERGOING CARDIAC RESYNCHRONIZATION THERAPY

50-YEAR-OLD MALE WITH DILATED CARDIOMYOPATHY AND LEFT BUNDLE BRANCH BLOCK (LBBB)

QRS: 178 MS

NYHA: CLASS II

EF: 27%

PRODUCT IMPLANTED QUADRA ASSURA MP™ CRT-D

MULTIPOINT™ PACING WAS TURNED ON IMMEDIATELY

OPTIMIZED TRADITIONAL CRT
24% in %SW

OPTIMIZED MULTIPOINT™ PACING
31.7% in %SW
INTRODUCTION

This is a case report of a 50-year-old male with dilated cardiomyopathy and left bundle branch block (LBBB) who underwent cardiac resynchronization therapy (CRT) implantation. The patient participated in a study conducted in the UMC Utrecht (the Netherlands) optimizing CRT settings with pressure-volume loop measurements; the OPTICARE-QLV study.

This patient suffers from heart failure, NYHA functional Class II with a LV ejection fraction of 27% on MRI. A dilated cardiomyopathy was diagnosed, as MRI showed no signs of delayed enhancement. Comorbidity was paroxismal atrial fibrillation. ECG: QRS-width of 178 ms with a LBBB according to Strauss criteria (Figure 1).

METHODS

A CRT-D device (Quadra Assura MP™, Abbott) was successfully implanted with a Quartet™ quadripolar LV lead. First, the electrical delays between onset of QRS-complex and local LV-depolarization were measured (QLV) of each quadripolar electrode. Next, a pressure volume loop catheter (CD Leycom™, Zoetermeer, the Netherlands) was inserted via the femoral artery and placed in the LV cavity.

Pacing settings were optimized for all four quadripolar electrodes, using the RV-coil as anode. Four atrioventricular delays (AVD) were implemented, using 80, 60, 40 and 20% of the intrinsic atrial paced to RV-sensed delay. All settings were programmed using an interventricular delay (VVD) of -40 ms (LV first). DDD pacing was performed 5 to 10 beats above intrinsic rhythm. PV-loops (Figure 3) were recorded for 60 beats for each pacing setting and compared to preceding and subsequent baseline recording of 30 beats each (AAI pacing). The resulting parameter, increase in strokework compared to baseline (%SW) was recorded and calculated by offline analysis for each setting and electrode.

The results of %SW were plotted against the used AV-delay, and a second order polynomial curve was fitted to the data. The maximal increase of the fitted line was used as the theoretical maximal benefit of the quadripolar configuration.

Finally MultiPoint™ Pacing was implemented, using the electrodes D1 and P4 of the quadripolar lead. Three settings were compared: simultaneous MultiPoint™ Pacing with D1 and P4 (D1-RVcoil and P4-RVcoil with a minimal inter left ventricular delay (ILVD) of 5 ms and a VVD of -35 ms), D1 and P4 with an ILVD of 35 ms and VVD of -5 ms, and finally the electrode sequence was switched, pacing P4 first and D1 second with the same delays. All configurations were tested with the four previous mentioned AVD’s.
RESULTS

The optimal pacing configuration using a quadripolar lead (D1-RVcoil, AVD 140 ms and VVD -40 ms) gave an acute increase of 24.0% in %SW (Figure 4A) compared to baseline. The electrode configuration with the least optimal response was P4-RVcoil, with an increase of 9.0%. MultiPoint™ Pacing gave a maximal benefit in %SW of 31.7% on D1 and P4 with an ILVD of 35 ms (AVD 145 ms, VVD -5 ms, ILVD 35 ms (Figure 4B). There was no correlation between %SW and QLV (QLV results, D1: 153 ms, M2: 164 ms, M3: 162 ms, P4: 153 ms).

CONCLUSION

This case report shows the acute hemodynamic benefit of optimizing CRT with a quadripolar LV lead, using multiple AV-delays and pressure-volume loops. It further advocates the potential benefit of MultiPoint™ Pacing. More cases are needed to confirm these results, and will follow in the OPTICARE-QLV study.
MULTIPOINT™ PACING CARDIAC RESYNCHRONIZATION THERAPY IMPROVES HEMODYNAMIC OUTCOMES

Seung-Jung Park, M.D.
Samsung Medical Center, Seoul, Republic of Korea
HEMODYNAMIC CASE STUDY

MULTIPOINT™ PACING CASE STUDY
HEMODYNAMIC CHANGES IN A PATIENT UNDERGOING CARDIAC RESYNCHRONIZATION THERAPY

15-YEAR-OLD FEMALE WITH KAWASAKI DISEASE

QRS: 164 MS
NYHA: CLASS: II / III
EF: 20%

PRODUCT IMPLANTED
QUADRA ASSURA MP™ CRT-D

MULTIPOINT™ PACING WAS TURNED ON IMMEDIATELY

QRS: 134 MS
14 WEEKS

NYHA: CLASS: I
EF: 33%
HEMODYNAMIC CASE STUDY

INTRODUCTION
Recent studies have shown that MultiPoint™ Pacing can improve the hemodynamic response to cardiac resynchronization therapy (CRT). Data has also shown that the improvement was seen in both ischemic and nonischemic patients. This new technology advancement has strengthened the confidence of a young ischemic cardiomyopathy patient, her family and her pediatric physician, who had been hesitant about device therapy but is now committed to CRT implant.

PATIENT HISTORY
• 15-year-old female
• NYHA Class II/III
• Kawasaki disease diagnosed in 2001 when patient was 1 year old
• Myocardial infarction due to LAD and RCA occlusion in 2011 that progressed to dilated cardiomyopathy
• CABG surgery in 2002 (LITA to mid LAD)
• Since 2010, the deterioration of LV function, QRS widening and dyspnea were more significant (Table 1)

IMPLANTATION AND MULTIPOINT™ PACING PROGRAMMING
The patient was implanted with an Abbott Quadra Assura MP™ CRT-D and Quartet™ LV lead 1458Q. The Quartet lead facilitated a fast and smooth implantation of about 1.5 hours, which helped to lessen the nervousness of the pediatric patient.

ECG was evaluated for all 10 vectors under biventricular pacing. Then, RV-LV conduction test was performed to determine the earliest and latest conduction test.

RV-LV conduction test (RV sensed) (Figure 1)
• Earliest activation: D1 (92 ms)
• Latest activation: P4 (131 ms)

RV-LV conduction test (RV paced) (Figure 2)
• Earliest activation: D1 (193 ms)
• Latest activation: P4 (228 ms)

Table 1

<table>
<thead>
<tr>
<th>Time</th>
<th>QRS duration (ms)</th>
<th>LV ED (mm)</th>
<th>LV ES (mm)</th>
<th>LV EF (%)</th>
<th>NYHA class</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-Aug</td>
<td>106</td>
<td>55</td>
<td>40</td>
<td>52</td>
<td>I</td>
</tr>
<tr>
<td>2011-Jul</td>
<td>118</td>
<td>62</td>
<td>48</td>
<td>43</td>
<td>I</td>
</tr>
<tr>
<td>2012-Sep</td>
<td>138</td>
<td>68</td>
<td>51</td>
<td>47</td>
<td>I</td>
</tr>
<tr>
<td>2013-Jul</td>
<td>146</td>
<td>69</td>
<td>61</td>
<td>26</td>
<td>I-II</td>
</tr>
<tr>
<td>2014-Aug</td>
<td>158</td>
<td>72</td>
<td>60</td>
<td>33</td>
<td>II-III</td>
</tr>
<tr>
<td>2015-Jan</td>
<td>164</td>
<td>75</td>
<td>64</td>
<td>20</td>
<td>II-III</td>
</tr>
</tbody>
</table>
HEMODYNAMIC IMPROVEMENT WITH MULTIPOINT™ PACING

During the implant, the QRS duration under various pacing configurations was measured. A narrowing of the QRS complex was observed progressively from intrinsic baseline to conventional CRT (D1-M2), and then MultiPoint™ Pacing. The shortest QRS duration was achieved with MultiPoint Pacing at 134 ms (Figure 5).

Figure 5a. Change in QRS duration. 2010-Aug: QRSd 106 ms (top) and 2015-Jan: QRSd 164 ms (bottom)

Figure 5b. Change in QRS duration. Conventional CRT: QRSd 145 ms (top) and MultiPoint Pacing CRT: QRSd 134 ms (bottom)
On the next day after implant, acute dP/dt_{\max} measurement was performed. The best dP/dt_{\max} was acquired under MultiPoint™ Pacing with a 39.4% increment from the baseline (Table 2 and Figure 6).

Table 2. Acute hemodynamic changes

<table>
<thead>
<tr>
<th>Pacing types</th>
<th>dP/dt (mmHg/s)</th>
<th>C.O. (l/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsic</td>
<td>710</td>
<td>2.69</td>
</tr>
<tr>
<td>Conventional BiV pacing</td>
<td>980</td>
<td>3.65</td>
</tr>
<tr>
<td>MultiPoint™ pacing</td>
<td>990</td>
<td>3.81</td>
</tr>
</tbody>
</table>

Two weeks after implantation, the NT-proBNP test was done. There was a significant reduction of the NT-proBNP level from 4,299 before implantation to 2,168 after two weeks of MultiPoint Pacing. The reading was reduced to 1,854 after six weeks of MultiPoint Pacing, and further reduced to 1,231 after 14 weeks. The continued reduction in NT-proBNP levels following implant with MultiPoint Pacing programming indicated that the patient's heart failure condition was continuously improving (Figure 7).

Figure 6

Figure 7. Change in NT-proBNP
Table 3 and Table 4 summarize the acute and 3-month hemodynamic improvement of the patient.

Table 3. Acute hemodynamic change

<table>
<thead>
<tr>
<th>Test</th>
<th>Time to Perform</th>
<th>Intrinsic Baseline</th>
<th>Conventional CRT</th>
<th>MultiPoint™ Pacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>QRS Duration (ms)</td>
<td>Implant day</td>
<td>164</td>
<td>145</td>
<td>134</td>
</tr>
<tr>
<td>dP/dt_{max} (mmHg/s)</td>
<td>2nd day</td>
<td>710</td>
<td>979</td>
<td>990</td>
</tr>
<tr>
<td>Cardiac Output (L/m)</td>
<td>2nd day</td>
<td>2.69</td>
<td>3.65</td>
<td>3.81</td>
</tr>
</tbody>
</table>

Table 4. Summary of the hemodynamic improvement of the patient

<table>
<thead>
<tr>
<th>Test</th>
<th>Baseline</th>
<th>2 weeks</th>
<th>6 weeks</th>
<th>14 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT-proBNP</td>
<td>4,299</td>
<td>2,168</td>
<td>1.854</td>
<td>1.231</td>
</tr>
<tr>
<td>LV EF (%)</td>
<td>20%</td>
<td>25%</td>
<td>30%</td>
<td>33%</td>
</tr>
<tr>
<td>NYHA Class</td>
<td>II/III</td>
<td>II</td>
<td>I/II</td>
<td>I</td>
</tr>
</tbody>
</table>

CONCLUSION

MultiPoint™ Pacing demonstrated a better performance compared to conventional biventricular pacing regarding acute electrical reverse remodeling and hemodynamic changes for this patient with ischemic cardiomyopathy caused by Kawasaki disease. This patient’s condition was improved with an early activation of MultiPoint Pacing therapy.

LV DYSSYNCHRONY AND HEMODYNAMIC IMPROVEMENT WITH MULTIPOINT™ PACING AFTER THREE MONTHS.
AN ANATOMICAL APPROACH

Pau Alonso Fernández, M.D., Ph.D.
Hospital Universitario y Politécnico La Fe, Valencia, Spain
MULTIPOINT™ PACING CASE STUDY

HEMODYNAMIC CHANGES IN A PATIENT UNDERGOING CARDIAC RESYNCHRONIZATION THERAPY

66-YEAR-OLD FEMALE WITH LBBB

NYHA:
CLASS II-III

QRS:
160

PRODUCT IMPLANTED
QUADRA ASSURA MP™ CRT-D

DEVICE WAS PROGRAMMED AAI

MULTIPOINT™ PACING WAS TURNED ON

CARDIAC OUTPUT:
2.4 L/M
S-L DELAY:
120 ms

CARDIAC OUTPUT:
3.7 L/M
S-L DELAY:
-10 ms

THE MULTIPOINT PACING TECHNOLOGY WAS ABLE TO IMPROVE HEMODYNAMICS MORE THAN CRT WITH A SINGLE PACING VECTOR
CLINICAL HISTORY
• 66-year-old female
• Dilated cardiomyopathy
• Left ventricular ejection fraction (LVEF) 30%
• Left bundle branch block (LBBB) with QRS width of 160 ms
• NYHA functional class II to III

PROCEDURE
Dyssynchrony evaluation protocol
Three months after device implantation, transthoracic echocardiography was performed in a blind fashion to calculate haemodynamic parameters (LVEF and cardiac output). Radial dyssynchrony by speckle-tracking strain was defined as the time-to-peak difference between the septal and lateral wall segmental peak strains (S-L delay, Figure 1). Standard deviation of times to peak radial strain in the six basal segments was also measured as a global dyssynchrony parameter.

Baseline (AAI 90 bpm) was compared with different cardiac resynchronization therapy (CRT) pacing configurations.

Table 1. Programmed settings before and after MultiPoint Pacing

<table>
<thead>
<tr>
<th>Pacing Configuration</th>
<th>Timing</th>
<th>Cardiac Output (l/m)</th>
<th>S-L Delay (ms)</th>
<th>RS-SD6 (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAI</td>
<td></td>
<td>2.4</td>
<td>120</td>
<td>82</td>
</tr>
<tr>
<td>P4-RV coil</td>
<td>Simult</td>
<td>2.6</td>
<td>110</td>
<td>81</td>
</tr>
<tr>
<td>D1-RV coil</td>
<td>Simult</td>
<td>2.7</td>
<td>95</td>
<td>64</td>
</tr>
<tr>
<td>D1-RV coil → P4-RV coil</td>
<td>5-5 (LV-LV-RV)</td>
<td>3.7</td>
<td>-10</td>
<td>12</td>
</tr>
<tr>
<td>M3-RV coil → P4-RV coil</td>
<td>5-5 (LV-LV-RV)</td>
<td>3.2</td>
<td>60</td>
<td>43</td>
</tr>
</tbody>
</table>

Figure 1. Example of S-P calculation in baseline situation; S-L delay is indicated by white arrow and measured (124 ms).

Vectors Configuration
• Distal vector: D1-RV coil
• Proximal vector: P4-RV coil
• MultiPoint™ Pacing technology anatomical-guided vector: D1-RVcoil → P4-RVcoil, to capture a broader area.
• MultiPoint Pacing technology electrical-guided vector: M3-RVcoil → P4-RVcoil, by using the electrodes with a greater delay between RV sensing.
RESULTS

- The MultiPoint Pacing technology was able to improve haemodynamics more than CRT with a single pacing vector (see Table 1).
- The MultiPoint Pacing technology provided a higher correction of dyssynchrony than conventional CRT (see Figure 2).
- Anatomical approach showed better results (see Table 1).

Figure 2. LV dyssynchrony analysis from basal short-axis views in the patient. In baseline conditions, the patient exhibited significant LV dyssynchrony (QRS width 160 ms). Furthermore, there was a delayed mechanical activation of the lateral wall compared with the septum (S-L delay 124 ms) (B and C). With conventional biventricular pacing configuration, a decrease in the value of LV dyssynchrony was shown (S-L delay 110 and 95 ms) (D and E). With MultiPoint™ pacing technology configuration, a higher decrease in LV dyssynchrony was shown. The highest LV dyssynchrony reduction was seen when anatomical approach (D) was employed (S-L delay 10 ms).
OPTIMIZATION OF CARDIAC PACING OUTCOMES
BY USE OF MULTIPOINT™ PACING CARDIAC RESYNCHRONIZATION THERAPY (CRT) COMPARED WITH CONVENTIONAL CRT

Prof. Ian Wilcox, MBBS BMedSci
Ph.D. MAICD FRACP FCSANZ FCCP

Prof. Michael Vallely, MBBS (Sydney)
Ph.D. (Sydney Uni) FRACS

Dr. Michele McGrady, MBBS
(Sydney) Ph.D. (Monash) FRACP
85-YEAR-OLD FEMALE WITH MULTIPLE COMORBIDITIES

QRS: 180 MS
EF: 36%

PRODUCTS IMPLANTED
QUADRA ASSURA MP™ CRT-D
QUARTET™ LV LEAD

MULTIPOINT™ PACING WAS TURNED ON IMMEDIATELY

QRS: 109 MS
EF: 36%

3 MONTHS

UNPACED
EF: 39%

TRADITIONAL CRT
EF: 49%

MULTIPOINT™ PACING
EF: 62%
HEMODYNAMIC: CASE STUDY

INTRODUCTION
While the 2009 introduction of quadripolar lead technology led to improved acute hemodynamic response to CRT, non- or low-responder rates still remain a challenge. By providing an additional left ventricular (LV) stimulation vector, MultiPoint™ Pacing can improve resynchronization and hemodynamic outcomes. While the patient in this case had a good clinical response to conventional LV single-site CRT in terms of QRS interval reduction and increased ejection fraction, a switch to MultiPoint™ Pacing improved these outcomes further.

PATIENT HISTORY
• 85-year-old female
• History of coronary artery disease (CAD)
• QRS duration = 180 ms
• Left bundle branch block (LBBB)
• Baseline ejection fraction (EF) = 36%
• Heart rate (HR) range 38-89 bpm on Holter monitoring

The patient had moderate LV systolic dysfunction with regional variation in contraction probably not entirely attributable to LBBB, but consistent with CAD.

Baseline ECG
Sinus rhythm, no stimulation QRS = 180 ms, 25 mm/s

Response to conventional LV single-site pacing

<table>
<thead>
<tr>
<th>Pacing site</th>
<th>QRS duration (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right ventricle (RV) paced</td>
<td>168</td>
</tr>
<tr>
<td>D1 LV pacing only</td>
<td>180</td>
</tr>
<tr>
<td>P4 LV pacing only</td>
<td>191</td>
</tr>
<tr>
<td>Simultaneous biventricular pacing at P4</td>
<td>144</td>
</tr>
</tbody>
</table>

MULTIPOINT™ PACING THERAPY
The patient was implanted with a Quadra Assura MP™ CRT-D and Quartet™ LV lead (Abbott).

PROGRAMMING
The anatomical method, i.e. selection of the two farthest poles with no phrenic nerve stimulation (PNS) and satisfactory thresholds, was used in this patient. Two methods were used to determine LV1 and LV2:
1. Latest activation = LV1, and earliest activation = LV2
2. Earliest activation = LV1, and latest activation = LV2

MultiPoint™ Pacing programming (anatomical method)

<table>
<thead>
<tr>
<th>Prog. 1</th>
<th>LV1</th>
<th>LV2</th>
<th>LV1 – LV2</th>
<th>QRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4 to RVC (latest)</td>
<td>D1 to RVC (earliest)</td>
<td>5ms</td>
<td>25ms</td>
<td>121ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prog. 2</th>
<th>LV1</th>
<th>LV2</th>
<th>LV1 – LV2</th>
<th>QRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 to RVC (earliest)</td>
<td>P4 to RVC (latest)</td>
<td>5ms</td>
<td>25ms</td>
<td>109ms</td>
</tr>
</tbody>
</table>

Program 1: QRS = 121 ms
CONCLUSION

Developments in MultiPoint™ Pacing programming have provided multiple options, not currently available with traditional CRT, which potentially may improve patient outcomes. This case study demonstrates that MultiPoint™ Pacing may potentially offer a significantly improved acute hemodynamic response to CRT, compared with traditional single-site LV pacing.

IMPROVED HEMODYNAMIC OUTCOMES WITH MULTIPoint™ PACING THERAPY

Each MultiPoint™ Pacing configuration (vectors and timing) provided improved electrical synchronization (assessed by QRS width) versus RV only, LV only and simultaneous RV–LV stimulation.

In this case, programming using the shortest delay between LV1 and LV2 (5ms) produced incremental benefit for the patient compared with traditional CRT.

VENTRICULAR REMODELING FOLLOWING IMPLANTATION

The patient returned for echo optimization of CRT at 3 months following implantation and activation of MultiPoint™ Pacing. At this visit her intrinsic (unpaced) EF was found to have increased from pre-implantation baseline value (36%) to 39%, suggesting that some remodeling may have already taken place.

<table>
<thead>
<tr>
<th></th>
<th>Ejection fraction (%)</th>
<th>Percentage increase (%) compared with baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Intrinsic (unpaced) at 3 months</td>
<td>39</td>
<td>8</td>
</tr>
<tr>
<td>Traditional CRT</td>
<td>49</td>
<td>36</td>
</tr>
<tr>
<td>MultiPoint™ pacing</td>
<td>62</td>
<td>72</td>
</tr>
</tbody>
</table>

ECHO IMAGING

Baseline echo: QRS = 180 ms; EF = 36%

CRT echo: QRS = 140 ms; EF = 49%

MultiPoint™ Pacing CRT echo: QRS = 109 ms; EF = 62%
HEMODYNAMIC: CASE STUDY

IMPROVING THE HEMODYNAMIC RESPONSE TO CARDIAC RESYNCHRONIZATION THERAPY WHILE ELIMINATING PHRENIC NERVE STIMULATION IN A PATIENT WITH NON-ISCHEMIC CARDIOMYOPATHY

John F. Lund, M.D.
Mckay-Dee Heart Rhythm Services, Ogden, UT
69-YEAR-OLD FEMALE WITH NON-ISCHEMIC CARDIOMYOPATHY

NYHA: CLASS III
LVEF: 30%
ANTICIPATED RV PACING > 50%

PRODUCT IMPLANTED QUADRA ASSURA MP™ CRT-D

MULTIPOINT™ PACING WAS TURNED ON

3 MONTHS
EF: 40%

3 MONTHS
EF: 53%
HEMODYNAMIC: CASE STUDY

LV Pulse Pacing Vector Threshold
LV1 M3-RV coil 1.5 V @ 0.4 ms
LV2 D1-RV coil 1.0 V @ 0.4 ms

RESPONSE TO CRT: INITIAL PROGRAMMING AND OPTIMIZATION WITH MULTIPOINT™ PACING

Baseline
The CRT-D device was initially programmed to standard biventricular pacing utilizing the M3-RV coil vector with a threshold of 1.5V @ 0.4 ms in order to establish a baseline response. Other parameters are shown in Table 1.

Table 1. Baseline CRT Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>DDR: 60/120 ppm</td>
</tr>
<tr>
<td>Paced AV delay</td>
<td>150 ms</td>
</tr>
<tr>
<td>Sensed AV delay</td>
<td>100 ms</td>
</tr>
<tr>
<td>V-V timing via QuickOpt™ timing cycle optimization</td>
<td>LV → RV 35 ms</td>
</tr>
</tbody>
</table>

3-MONTH FOLLOW-UP

• The patient's LVEF improved to 40% on echocardiography prior to her 3-month follow-up with no heart failure symptoms at a clinic visit in December 2016.
• MultiPoint™ Pacing was programmed ON at this point in an effort to gain further improvements. The vectors shown in Table 2 and Figure 2 were chosen due to low thresholds and to provide a 30 mm separation between the cathodes. The interventricular delay between LV1 and LV2 was set at 5 ms and V-V timing was shortened to 30 ms as recommended with QuickOpt™ timing cycle optimization.
• The patient experienced intermittent phrenic nerve stimulation one week later. This was resolved with revised programming; the LV2 vector was changed from D1-RV coil to D1-P4 with a threshold of 1.5@ 0.4 ms; there was no phrenic stimulation at maximum output.

Table 2. Biventricular CRT Vectors at 3-Month Follow-up

<table>
<thead>
<tr>
<th>LV Pulse</th>
<th>Pacing Vector</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV1</td>
<td>M3-RV coil</td>
<td>1.5 V @ 0.4 ms</td>
</tr>
<tr>
<td>LV2</td>
<td>D1-RV coil</td>
<td>1.0 V @ 0.4 ms</td>
</tr>
</tbody>
</table>

Figure 1. MultiPoint™ pacing vectors programmed ON at 3-month follow-up.
6-MONTH FOLLOW-UP

- The patient’s LVEF improved further to 53% at 6-month follow-up, Table 3.
- The patient had no heart failure related hospital admissions at 6-month follow-up.

Table 3. Left Ventricular Ejection Fraction with and without MultiPoint™ Pacing

CONCLUSIONS

MultiPoint™ Pacing provided the flexibility needed to potentially optimize biventricular pacing and manage phrenic nerve stimulation non-invasively. The patient’s improved response to CRT was enhanced as demonstrated by incremental improvements in LVEF after MultiPoint™ Pacing was initialized.
EMPOWERING THE TRANSFORMATION OF HEART FAILURE
From treatment to ongoing patient management, Abbott is committed to working with you to transform heart failure and improve more patient lives.