euro PCR

Analysis of changes in decision-making process during optical coherence tomography-guided percutaneous coronary interventions: New Insights from the LightLab Initiative

<u>Hiram Bezerra,</u> Luis Dallan, Gabriel Tensol, Jana Buccola, Jason Wollmuth, John Lopez, Richard Rapoza, Nick West, Brian Bergmark, Kevin Croce on behalf of the LightLab Initiative Investigators.

euro PCR

Why this study?

European Heart Journal (2015) 36, 3346-3355 doi:10.1093/eurhearti/ehv367

FASTIRACK TO EuroPCR

JACC: CARDIOVASCULAR INTERVENTIONS © 2018 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

Angiography Alone Versus

Angiography Plus Optical

Coherence Tomography to Guide

CORONARY

Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study

William Wijns1*, Junya Shite2, Michael R. Jones3, Stephen W.-L. Lee4, Matthew J. Price5, Franco Fabbiocchi⁶, Emanuele Barbato¹, Takashi Akasaka⁷, Hiram Bezerra⁸, and David Holmes⁹

¹Cardiovascular Research Center, OLV Hospital, Moorselbaan 164, Aalst B 9300, Belgium; ²Osaka Saiseikai Nakatsu Hospital, Osaka, Japan; ³Baptist Health Lexington, Lexington, KY, USA: *University of Hong Kong, Queen Mary Hospital, Hospital Authority, Pok Fu Lam, Hong Kong, *Scripps Clinic, La Jolla, CA, USA: *Centro Cardiologico Monzino, IRCCS, Milan, Italy; "Wakayama Medical University, Wakayama, Japan; "University Hospitals Case Medical Center, Harrington Heart and Vascular Institute, Cleveland, OH, USA; and "Mayo Clinic, Rochester, MN, USA

Received 13 April 2015; revised 8 July 2015; accepted 15 July 2015; anline publish-ahead-of-print 4 August 2015

See page 3356 for the editorial comment on this article (doi:10.1093/eurheartj/ehv433)

Conclusion Physician decision-making was affected by

OCT imaging prior to PCI in 57% and post-PCI in 27% of all cases.

Outcomes From the Pan-London PCI Cohort Daniel A. Jones, MD, PhD,^a Krishnaraj S. Rathod, MD,^a Sudheer Koganti, MD,^a Stephen Hamshere, MD,^b Zoe Astroulakis, MD, PHD,^c Pitt Lim, MD,^c Alexander Sirker, MD, PHD,^a Constantinos O'Mahony, MD, Ajay K. Jain, MD,^a Charles J. Knight, MD,^a Miles C. Dalby, MD,^d Iqbal S. Malik, MBBS, PnD,^b 365 Anthony Mathur, MD, PHD,^a Roby Rakhit, MD,^e Tim Lockie, MBCHB, PHD,^e Simon Redwood, MD,[†] Philip A. MacCarthy, MBCHB, PHD,^g Ranil Desilva, MD, PHD,^d Roshan Weerackody, MD, PHD,^a Andrew Wragg, MD, PhD,^a Elliot J, Smith, MD,^a Christos V, Bourantas, MD, PhD^a

CONCLUSIONS In this large observational study, OCT-guided PCI was associated with improved procedural outcomes, inhospital events, and long-term survival compared with standard angiography-guided PCI. (J Am Coll Cardiol Intv 2018;11:1313-21)

VOL. 11, NO. 14, 2018

- Use of intracoronary imaging during PCI affects physician decision-making and is associated with reduced ٠ mortality
- Barriers to uptake include perceived lack of benefit and adverse impacts on workflow •
- The LightLab Initiative was set up to assess the utility of implementing OCT into PCI workflow
- The study was designed and sponsored by Abbott

Information contained herein for **DISTRIBUTION outside of the U.S. ONLY**. Check the regulatory status of the device in areas where CE marking is not the regulation in force. ©2020 Abbott. All rights reserved. MAT-2004654 v1.0 2 of 16

What did Abbott study?

The LightLab Initiative:

- 12 US centers with ongoing prospective PCI procedural data collection by trained & embedded Field Clinical Engineer
- Multiphase program to examine role & impact of OCT use

Baseline Phase: Assessment of current practice and collection of data for comparison to future phases

Phase 1 Decision Making: Adoption of LightLab OCT-focused workflow (LL WF) and the effect on accuracy/precision

nase 1 Efficiency: Standardization of LightLab OCT-focused workflow (LL WF) and the effect on efficiency

hase 2: Optimization of workflow to reduce angiographic pre-diagnosis steps and improve efficiency

hase 3: Expansion of workflow to increased procedural complexity and case presentations

Information contained herein for **DISTRIBUTION outside of the U.S. ON**LY. Check the regulatory status of the device in areas where CE marking is not the regulation in force. ©2020 Abbott. All rights reserved. MAT-2004654 v1.0 3 of 16

How was the study executed?

The LightLab Workflow

Prescriptive utilization of the full range of information from OCT pre PCI and post PCI to guide treatment decisions

euro **PCR**

How was the study executed?

Who? Study population

- All PCIs by participating physicians potentially eligible
- Decision on the part of physician whether . each PCI was clinically appropriate for OCT and for LightLab inclusion

What? Treatment decision-making

- Lesion morphology, number
- Vessel preparation strategy
- Stent diameter & length
- Vessel optimization/post-dilation strategy

How? Prospective data collection

Recorded on study proforma

DECISION MAKING FORM									
PROCEDURE PREP	DIAGNOSIS	TREATMENT POST							
ESION 1			GIOGRAPHY		K oc	Т			
D LESION ASSESSMENT	r -								
Impact of tomography: Lesion Size	Lesion Type	;	А		А				
	Morphology	Smooth contour			 Nonangulated segment <45° Readily accessible 		: <45°		
	Lesion Size	Distal RVD	Proximal RVD 2	Length 9	Distal RVD 2.25	Proximal RVD 2	Length 17		
🕈 TREATMENT PLAN									
Impact of tomography:	Intention to Trea	: 7	Yes - treat now		Yes - treat now				
 Vessel Preparation Treatment Stent Size 	Vessel Preparation		None		Non-Compliant Balloon				
	Treatmen	:	N/A		Stent				
	Number of Stents	;	1		1				
	Stent Size	2.25 x 17		2.25 x 23					
\boxtimes									

Information contained herein for **DISTRIBUTION outside of the U.S. ON**LY. Check the regulatory status of the device in areas where CE marking is not the regulation in force. ©2020 Abbott. All rights reserved. MAT-2004654 v1.0

Study Population

A total of 2203 procedures were assessed in this phase of the LL program (March 6, 2019 – March 12, 2020)

Information contained herein for **DISTRIBUTION outside of the U.S. ON**LY. Check the regulatory status of the device in areas where CE marking is not the regulation in force. ©2020 Abbott. All rights reserved. MAT-2004654 v1.0 6 of 16

LightLab Workflow Procedures (n=604)							
Planned/staged procedures	181/604 (30%)						
Access Site: Radial Femoral Radial & Femoral	357/573 (62%) 210/573 (37%) 6/573 (1%)						
Mechanical Support	9/604 (2%)						
Multivessel	63/604 (10%)						
STEMI	33/604 (6%)						
LightLab Workflow Lesions (n=652)							
Left Main RCA LAD CX Ramus Vein Graft	20/642 (3%) 188/642 (29%) 310/642 (48%) 100/642 (16%) 14/642 (2%) 10/642 (2%)						
Lesion Type: A B C	34/650 (5%) 258/650 (40%) 358/650 (55%)						
n-stent Restenosis	115/651 (18%)						
Long Lesions (OCT Lesion length ≥ 28 mm)	286/652 (44%)						
Chronic Total Occlusions	21/652 (3%)						
Bifurcations	66/648 (10%)						
Ostial Lesions	30/652 (5%)						

OCT changes angiographic-based decisions in 88% of lesions

Information contained herein for **DISTRIBUTION outside of the U.S. ON**LY. Check the regulatory status of the device in areas where CE marking is not the regulation in force. ©2020 Abbott. All rights reserved. MAT-2004654 v1.0 7 of 16

OCT changes angiographic-based decisions in 88% of lesions

Lesion assessment and treatment decisions that impact final stent expansion

Information contained herein for **DISTRIBUTION outside of the U.S. ON**LY. Check the regulatory status of the device in areas where CE marking is not the regulation in force. ©2020 Abbott. All rights reserved. MAT-2004654 v1.0 8 of 16

Inaccurate diagnosis of Calcium severity drives changes in vessel preparation strategy

Note: Excludes n=257 lesions where vessel prep was performed before pre-PCI OCT

Information contained herein for **DISTRIBUTION outside of the U.S. ON**LY. Check the regulatory status of the device in areas where CE marking is not the regulation in force. ©2020 Abbott. All rights reserved. MAT-2004654 v1.0 9 of 16

Angiographic guidance lead to inaccurate stent diameter in 38% of stented lesions

Information contained herein for **DISTRIBUTION outside of the U.S. ON**LY. Check the regulatory status of the device in areas where CE marking is not the regulation in force. ©2020 Abbott. All rights reserved. MAT-2004654 v1.0 10 of 16

Ability to detect stent underexpansion enables targeted optimization

Additional optimization performed after post-PCI OCT

No additional optimization performed after post-PCI OCT

- Population of lesions that followed the LightLab guided workflow achieved 80% minimum stent expansion on average
- Physicians performed targeted
 optimization in subset of lesions
 (38%) based on post-PCI OCT
 assessment

*Note: 80% is the mean expansion for the entire population. 84% is for the sub-group where no additional optimization was performed and represents the final expansion for the procedure. 73% is the sub-group where additional optimization was performed without a final OCT

Post dilatation performed in 85% of lesions before post-PCI OCT

Information contained herein for **DISTRIBUTION outside of the U.S. ON**LY. Check the regulatory status of the device in areas where CE marking is not the regulation in force. ©2020 Abbott. All rights reserved. MAT-2004654 v1.0 11 of 16

How was the study executed?

The LightLab Workflow

Prescriptive utilization of the full range of information from OCT pre PCI and post PCI to guide treatment decisions

The essentials to remember

Pre-PCI OCT Pullback

- OCT guidance impacted decision-making in 88% PCI cases in this prospective dataset
- The majority of changes occurred during diagnosis/planning & on treatment strategy derived from pre-PCI OCT pullback (83%):
 - Accurate classification of angiographically-underestimated lesions (eg Ca²⁺)
 - Additional/altered vessel preparation strategy
 - Correct vessel sizing leading to changes in planned stent diameter & length
- The population of lesions treated that followed LightLab-guided workflow achieved 80% stent expansion on average
- The unprecedented granularity of the volume of collected procedural data in this real-world cohort demonstrates a clear and important impact of OCT on lesion assessment, procedural planning and stent optimization

OCT images courtesy of Dr. Croce.

PCR

Information contained herein for **DISTRIBUTION outside of the U.S. ON**LY. Check the regulatory status of the device in areas where CE marking is not the regulation in force. ©2020 Abbott. All rights reserved. MAT-2004654 v1.0 13 of 16

Abbott

LightLab Initiative Investigators & Affiliated Hospitals

Austin Heart	Frank Zidar Thomas McMinn	Loyola University Hospital	John Lopez Amir Darki Lowell Steen	Veda Inamdar Maher Saadeh	Michael Hammerstone Greg Amis
Beth Israel Deaconess	Eric Osborn Eric Secemsky Marie-France Poulin Hector Tamez	Montefiore Medical Center	Judah Rauch Michael Johnson Mark Greenberg	Chidalu Mozie Sydney Green	Jana Buccola Joia Spinelli
Brigham and Women's Hospital	Kevin Croce Brian Bergmark Ajar Kochar	North Florida Regional Medical	Matheen Khuddus Jay Koons Mark Tulli Steven Roark	Savni Kulkarni Chiedza Chauruka Haley Mitchell	Jennifer Meinen Richard Rapoza Nick West
Greenville Memorial Hospital	Zach George Jesse Jorgensen Josh Doll Joseph Henderson Chetan Patel Dominic Johnson	Providence St. Vincent & Providence Portland	Chris Caputo Ethan Korngold Jason Wollmuth Rick Sohn Charles Cannan	Morgan Prince Karl Engel Aimee Gerold	
HonorHealth Shea & Deer Valley	David Rizik Bimal Padaliya Kethes Waram Alok Sharma Mayurkumar Bhakta	St. Patrick's Hospital University Hospitals Cleveland Medical Center & UH Ahuia	Daniel Spoon James "Tod" Maddux Michael Reed Hiram Bezerra William Wolf	Jossel Disengi	
		Via Christi St. Francis & Kansas Heart Hospital	Bassem Chehab Aziz Maksoud		

Caution: This product is intended for use by or under the direction of a physician. Prior to use, reference the Instructions for Use provided inside the product carton (when available), at eifu.abbottvascular.com or at medical.abbott/manuals for more detailed information on Indications, Contraindications, Warnings, Precautions and Adverse Events. Information contained herein for **DISTRIBUTION outside the U.S. only**. Check the regulatory status of the device before distribution in areas where CE marking is not the regulation in force.

Abbott International BVBA Park Lane, Culliganlaan 2B, 1831 Diegem, Belgium, Tel: 32.2.714.14.11

www.cardiovascular.abbott ©2020 Abbott. All rights reserved. MAT-2004654 v1.0

