ABBOTT HEART FAILURE

cardiomems™ hf system Clinical data

Day | Month | YY

Proprietary and confidential — do not distribute

CARDIOMEMS™ HF SYSTEM CLINICAL DATA Key clinical studies

CARDIOMEMS™ HF SYSTEM CLINICAL DATA Key clinical outcomes

REDUCTION IN PA PRESSURES^{1,2,5,8-13}

OUTSTANDING SAFETY DATA^{1,8-11,13}

EXCELLENT PATIENT ADHERENCE^{5,8-11}

REDUCTION IN HEART FAILURE HOSPITALIZATIONS^{1-3,6-14}

PROVEN SOLUTION FOR HFpEF AND HFrEF PATIENTS^{1-3,8-12}

IMPROVED QOL^{1,8,11}

OPTIMIZED MEDICAL MANAGEMENT^{1,2,4,8,9,13}

IMPROVED SURVIVAL^{4,7,15}

CARDIOMEMS™ HF SYSTEM CLINICAL DATA Supported by multiple study designs

RANDOMIZED CONTROLLED

The "gold standard" of clinical trials. All patients are implanted and followed prospectively. Patients are blinded to group assignment. Treatment is compared to control.

SINGLE-ARM

The patient's pre-implant history serves as the comparator to what the patient experiences prospectively after implant.

U.S. POST-APPROVAL (N = 1,200)

СОАST-НF (UK сонокт) (N = 100)

PROPENSITY-MATCHED

Retrospective analysis comparing similar baseline patients over the same time period. Those who were not implanted serve as the "control."

HOW DO THE DATA Come together?

Come together?			(Ê)	\bigvee	S S	L C S		ŝ	6	ر ال
STUDY	DESIGN	N	Heart Failure Hospitalization	PA Pressure	HFpEF	Safety	QOL	Adherence	Elevated BNP*	Survival
CHAMPION Pivotal Study ²	RCT	550	\checkmark	\checkmark		\checkmark	\checkmark			
Proven Benefits in HFpEF Patients ³	RCT Subgroup	119	\checkmark	\checkmark	\checkmark					
Synergistic Impact With GDMT ⁴	RCT Subgroup	456	\checkmark							\checkmark
First 2,000 Commercial Implants ⁵	Retrospective	2,000		\checkmark	\checkmark			\checkmark		
COAST ¹⁰	OUS Single-Arm	100	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Propensity-Matched Outcomes ⁷	Retrospective Database	2,174	\checkmark							\checkmark
MEMS-HF European Study ⁸	Single-Arm	234	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
U.S. Post-Approval Study ⁹	Single-Arm	1,200	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
GUIDE-HF Study ¹¹	RCT	1,000	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
MONITOR-HF ¹⁴	RCT	348	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	\checkmark	
Meta-Analysis of GUIDE-HF, CHAMPION and LAPTOP ^{4,7,11,15}	Retrospective	1,350	~							\checkmark

CARDIOMEMS™ HF SYSTEM CLINICAL DATA PA pressure reduction

CARDIOMEMS™ HF SYSTEM CLINICAL DATA Hospitalization reduction

SUPPORTING STUDIES	HEART FAILURE HOSPITALIZATION REDUCTION	DESIGN
GUIDE-HF ¹¹	28%	RCT
MONITOR-HF ¹⁴	44%	RCT
U.S. Post-Approval ⁹	57%	Single-Arm
MEMS-HF ⁸	62%	Single-Arm
CHAMPION Study ²	33%	RCT
Economic Impact ⁵	34%	Retrospective Database
Synergistic Impact With GDMT ⁶	43%	Retrospective
Propensity-Matched Cohort ⁷	24%	Retrospective Database

HFpEF outcomes

The number-one proven therapy to reduce heart failure hospitalizations in HFpEF patients

Proprietary and confidential — do not distribute

Improved survival

Hemodynamic monitoring with the CardioMEMSTM HF System improves survival in heart failure patients^{4,7,15}

CARDIOMEMS™ HF SYSTEM CLINICAL DATA Improved quality of life

Across all patient-reported outcomes

MONITOR-HF14

Outstanding safety performance

Over 3,300 patients in prospective trials demonstrating greater than 99% freedom from device complications

CARDIOMEMS™ HF SYSTEM CLINICAL DATA Excellent patient adherence

Transmissions Compliance First 2,000 Implants⁵

Days Between Transmission

SUPPORTING STUDIES	MEAN WEEKLY TRANSMISSION
GUIDE-HF ¹¹	> 89%
MEMS-HF ⁸	89%
COAST-UK ¹⁰	94%
U.S. Post-Approval ⁹	93%
First 2,000 Implants ⁵	98%

Optimizing medical management

Frequency of Medication Changes by Drug Class¹⁶

Proprietary and confidential — do not distribute

CARDIOMEMS™ HF SYSTEM CLINICAL DATA Cost-effective

ADDITIONAL COST-EFFECTIVENESS STUDIES

Kolominsky-Rabas, et al. *Telemedicine and e-Health*. 2016.¹⁸ Martinson, et al. *European J Heart Failure*. 2017.¹⁹ Schmier, et al. *Clinical Cardiology*. 2017.²⁰ Cowie, et al. *European J Heart Failure*. 2017.²¹

PRE-PANDEMIC ANALYSIS GUIDE-HF randomized arm results¹¹

THE LARGEST CLINICAL TRIAL of the CardioMEMS[™] HF System

RESULT HIGHLIGHTS

- 28% heart failure hospitalization reduction
- Significantly greater PA pressure reduction in the treatment group versus the control group
- Similar benefit for patients enrolled with previous heart failure hospitalization versus elevated BNP alone
- 99.2% freedom from DSRC

GUIDE-HF **reaffirmed** all previous studies of the CardioMEMS HF System and demonstrated an extended benefit in **earlier** and **less severe** stages of heart failure

Comparison of CardioMEMS[™] HF system RCTs

Strong evidence across different endpoints, study designs and geographies²²

	CHAMPION ²	GUIDE-HF ¹¹	MONITOR-HF ¹⁴
Patients	550	1,000	348
Study Design	Single-Blind RCT	Single-Blind RCT	Open Label RCT
Control Arm Received CardioMEMS HF System	Yes	Yes	No
Primary Endpoint	Composite of HF Events	HF Hospitalizations	Quality of Life (KCCQ)
Mean Follow-Up	17.6 Months	10.8 Months	21.4 Months
Published Date	2011	2021	2023
Sites # (Countries)	65 (USA)	65 (USA, Canada)	25 (Netherlands)

CARDIOMEMS[™] HF SYSTEM

CardioMEMS[™] HF system RCTs: reduction in HFH

	CHAMPION ² N = 270	GUIDE-HF^{11*} N = 497	MONITOR-HF ¹⁴ N = 176
Reduction in HFH HR (95% CI) P Value	0.67 (0.55, 0.80) P < 0.0001	0.72 (0.57, 0.92) P = 0.0072	0.56 (0.38, 0.84) P = 0.0053
% Reduction in HFH	33%	28%	44%

Consistent and improved outcomes in three prospective RCTs across Europe and North America, and independent of evolving and improving GDMT²²

*Pre-COVID-19 analysis.

Proprietary and confidential — do not distribute

HOW DO THE DATA Come together?

Come together?			(Ê)	\bigvee	S S	L C C		$\hat{\mathbf{x}}$	6	Ŵ
STUDY	DESIGN	N	Heart Failure Hospitalization	PA Pressure	HFpEF	Safety	QOL	Adherence	Elevated BNP*	Survival
CHAMPION Pivotal Study ²	RCT	550	\checkmark	\checkmark		\checkmark	\checkmark			
Proven Benefits in HFpEF Patients ³	RCT Subgroup	119	\checkmark	\checkmark	\checkmark					
Synergistic Impact With GDMT ⁴	RCT Subgroup	456	\checkmark							\checkmark
First 2,000 Commercial Implants ⁵	Retrospective	2,000		\checkmark	\checkmark			\checkmark		
COAST ¹⁰	OUS Single-Arm	100	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Propensity-Matched Outcomes ⁷	Retrospective Database	2,174	\checkmark							\checkmark
MEMS-HF European Study ⁸	Single-Arm	234	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
U.S. Post-Approval Study ⁹	Single-Arm	1,200	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
GUIDE-HF Study ¹¹	RCT	1,000	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
MONITOR-HF ¹⁴	RCT	348	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Meta-Analysis of GUIDE-HF, CHAMPION and LAPTOP ^{4,7,11,15}	Retrospective	1,350	~							\checkmark

Acronyms

ACEI	angiotensin-converting enzyme inhibitor	HFrEF	heart failure with reduced ejection fraction
ARB	angiotensin receptor blocker	HFpEF	heart failure with preserved ejection fraction
AUC	area under curve	HR	hazard ratio
BNP	B-type natriuretic peptide	KCCQ	Kansas City Cardiomyopathy Questionnaire
CI	confidence interval	mPAP	mean pulmonary artery pressure
DSRC	device-/system-related complication	OUS	outside the United States
EF	ejection fraction	PA	pulmonary artery
GDMT	guideline-directed medical therapy	QOL	quality of life
HF	heart failure	RCT	randomized controlled trial
HFH	heart failure hospitalizations		

References

- Abraham WT, Adamson PB, Bourge RC, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomized controlled trial. *The Lancet*. 2011;377(9766):658-666.
- Abraham WT, Stevenson LW, Bourge RC, et al. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: Complete follow-up results from the CHAMPION randomised trial. *The Lancet*. 2016;387(10017):453-461.
- Adamson PB, Abraham WT, Bourge RC, et al.Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction. *Circulation: Heart Failure*. 2014;7:935-944.
- Givertz MM, Stevenson LW, Costanzo MR, et al., on behalf of the CHAMPION Trial Investigators. Pulmonary artery pressure–guided management of patients with heart failure and reduced ejection fraction. J Am Coll Cardiol. 2017;70:1875-86.
- Heywood JT, Jermyn R, Shavelle D, et al. Impact of practice-based management of PA pressures in 2000 patients implanted with the CardioMEMS sensor. *Circulation*. 2017;135:1509-17.
- 6. Desai AS, Bhimaraj A, Bharmi R, et al. Ambulatory hemodynamic monitoring reduces heart failure hospitalizations in "real-world" clinical practice. *J Am Coll Cardiol.* 2017;69(19):2357-65.
- Abraham J, Bharmi R, Jonsson O, et al. Association of ambulatory hemodynamic monitoring with clinical outcomes in a concurrent matched cohort analysis. JAMA Cardiology. 2019;4(6):556-563.
- Angermann C, Assmus B, Anker SD, et al. Pulmonary-artery-pressure-guided therapy in ambulatory patients with symptomatic heart failure: the CardioMEMS European monitoring study for heart failure (MEMS-HF). European J of Heart Failure. 2020;22(10):1891-1901.
- Shavelle D, Desai A, Abraham W, et al. Lower rates of heart failure and all-cause hospitalizations during pulmonary artery pressure-guided therapy for ambulatory heart failure. *Circulation: Heart Failure*. 2020;13(8):229-238.
- 10. Cowie MR, Flett A, Cowburn P, et al. Real-world evidence in a national health service: results of the UK CardioMEMS HF System post-market study. *ESC Heart Failure*. 2021;9(1):48-56.
- 11. Lindenfeld J, Zile MR, Desai AS, et al. Haemodynamic-guided management of heart failure (GUIDE-HF): a randomized controlled trial. *The Lancet*. 2021;398:991-1001.
- 12. Zile MR, Mehra MR, Ducharme A, et al. Hemodynamically-guided management of heart failure across the ejection fraction spectrum: The GUIDE-HF trial. *JACC: Heart Failure*. 2022;10(12):931-944.
- Heywood JT, Zalawadiya S, Bourge RC, et al; CardioMEMS Post-Approval Study Investigators. Sustained reduction in pulmonary artery pressures and hospitalizations during 2 years of ambulatory monitoring. *Journal of Cardiac Failure*. 2023;29(1):56-66. doi:10.1016/j.cardfail.2022.10.422

- Brugts JJ, Radhoe SP, Clephas PRD, et al. Remote haemodynamic monitoring of pulmonary artery pressures in patients with chronic heart failure (MONITOR-HF): a randomised clinical trial [published correction appears in *The Lancet*. 2023;401(10394):2112]. *The Lancet*. 2023;401(10394):2113-2123. doi:10.1016/S0140-6736(23)00923-6
- Lindenfeld J; GUIDE-HF, CHAMPION and LAPTOP-HF Investigators. Longer Term Effects of Hemodynamic Monitoring on Outcomes: A Combined Data Analysis of Patients With HFrEF in CHAMPION, GUIDE-HF and LAPTOP-HF. Presented at: THT Conference; March 2023; Boston, MA.
- Costanzo MR, Stevenson LW, Adamson PB, et al. Interventions linked to decreased heart failure hospitalizations during ambulatory pulmonary artery pressure monitoring. J Am Coll Cardiol Heart Fail. 2016;4(5):333-344.
- Raval NY, Shavelle D, Bourge R, et al. Significant reductions in heart failure hospitalizations with the pulmonary artery pressure guided HF system: preliminary observations from the CardioMEMS post approval study. Abstracts presented at: HFSA 2017 21st Annual Meeting. *Journal of Cardiac Failure*. 2017;23(8):S27.
- Kolominsky-Rabas PL, Kriza C, Djanatliev A, et al. Health economic impact of a pulmonary artery pressure sensor for heart failure telemonitoring: A dynamic simulation. *Telemedicine and e-Health*. 2016;22:798-808.
- Martinson M, Bharmi R, Dalal N, Abraham WT, Adamson PB. Pulmonary artery pressure-guided heart failure management: US cost-effectiveness analyses using the results of the CHAMPION clinical trial. *European Journal Heart Failure*. 2017;19(5):652-660. doi:10.1002/ejhf.642
- Schmier JK, Ong KL, Fonarow GC. Cost-effectiveness of remote cardiac monitoring with the CardioMEMS heart failure system. *Clinical Cardiology*. 2017;40:430-436.
- Cowie MR, Simon M, Klein L, Thokala P. The cost-effectiveness of real-time pulmonary artery pressure monitoring in heart failure patients: a European perspective. *European Journal of Heart Failure*. 2017;19:661-669.
- Clephas PRD, Radhoe SP, Boersma E, et al. Efficacy of pulmonary artery pressure monitoring in patients with chronic heart failure: a meta-analysis of three randomized controlled trials. *European Heart Journal*. 2023;ehad346. doi:10.1093/eurheartj/ehad346

Abbott

6101 Stoneridge Drive, CA 94588 USA, Tel: 1 925 847 8600 Cardiovascular.Abbott/CardioMEMS

Rx Only

Brief Summary: Prior to using these devices, please review the Instructions for Use for a complete listing of indications, contraindications, warnings, precautions, potential adverse events and directions for use.

CardioMEMS™ HF System Indications and Usage: The CardioMEMS™ HF System is indicated for wirelessly measuring and monitoring pulmonary artery pressure and heart rate in NYHA Class II or III heart failure patients who either have been hospitalized for heart failure in the previous year and/or have elevated natriuretic peptides. The hemodynamic data are used by physicians for heart failure management with the goal of controlling pulmonary artery pressures and reducing heart failure hospitalizations.

CardioMEMS™ HF System Contraindications: The CardioMEMS HF System is contraindicated for patients with an inability to take dual antiplatelet or anticoagulants for one month post implant.

CardioMEMS™ HF System Potential Adverse Events: Potential adverse events associated with the implantation procedure include, but are not limited to, the following: air embolism, allergic reaction, infection, delayed wound healing, arrhythmias, bleeding, hemoptysis, hematoma, nausea, cerebrovascular accident, thrombus, cardiovascular injury, myocardial infarction, death, embolization, thermal burn, cardiac perforation, pneumothorax, thoracic duct injury and hemothorax.

myCardioMEMS[™] Mobile App Limitations: Patients must use their own Apple[‡] or Android[‡] mobile device to receive and transmit information to the myCardioMEMS[™] Mobile App. To do so the device must be powered on, app must be installed and data coverage (cellular or Wi-Fi[‡]) available. The myCardioMEMS[™] Mobile App can provide notification of medication adjustments and reminders, requests for lab work and acknowledgement that the PA pressure readings have been received. However, there are many internal and external factors that can hinder, delay, or prevent acquisition and delivery of the notifications and patient information as intended by the clinician. These factors include: patient environment, data services, mobile device operating system and settings, clinic environment, schedule/configuration changes, or data processing.

TM Indicates a trademark of the Abbott group of companies.
[‡] Indicates a third-party trademark, which is property of its respective owner.
© 2023 Abbott. All Rights Reserved.
MAT-2007440 v7.0 | Item approved for U.S. use only.

Proprietary and confidential - do not distribute

