EnSite Precision™
Cardiac Mapping System
ACCURACY OF THE ENSITE™ NAVX™ NAVIGATION AND VISUALIZATION TECHNOLOGY, SENSOR ENABLED™
Accuracy of the EnSite™ NavX™ Navigation and Visualization Technology, Sensor Enabled™
SKIN PREPARATION

EnSite Precision™ System procedures. Related to surface patch placement during the steps below helps minimize the noise for electrophysiology studies. Adhering to Good skin preparation is essential to all aspects of an EnSite™ NavX™ Navigation and Visualization Technology, Sensor Enabled™ study.

TRIM EXCESS HAIR

Using the following technique: trim excess hair from all locations where surface electrodes will be placed. Note: trimming should be done carefully to avoid damaging the skin.

CLEAN THE SURFACE

Complete dry the skin surface with soap and water after the skin has been abraded. With soap and water, gently clean the skin to remove any dirt or oil. Note: Avoid cleaning with excessively oily or covered with lotion.

ABRADE THE SKIN

Using a skin abrader, ensure that the skin is not excessively oily or covered with lotion. Make sure that all the gel material is removed from the skin. A gauze pad or like material, or using a gel prep (such as Omni Prep) that contains small particles of gritty material, is recommended.

PATIENT PATCH DIAGRAM

When placing the EnSite Precision™ Surface Electrodes on the patient, it is important to place them in the correct position, not only in relationship to each other, but also in relationship to other surface electrodes placed for other purposes. When placing the EnSite Precision™ Surface Electrodes, the PRS anterior, and the PRS posterior are connected to the patient using disposable, self-adhesive patches, and primarily function as sensors for metal distortion and patient movement.

Disposables

The EnSite Precision™ surface electrode kit consists of a system reference surface electrode and six surface electrodes that are placed on the patient in pairs: anterior to posterior, left to right lateral, and superior (neck) to inferior (leg) (Figure 1). The three electrode pairs form three orthogonal axes (X-Y-Z), with the heart at the center. Two PRSs are also used with the EnSite Precision System: a PRS anterior, and a PRS posterior. The PRSs are connected to the patient using disposable, self-adhesive patches, and primarily function as sensors for metal distortion and patient movement.

During model collection, both impedance-based points and magnetic-based points are collected from a Sensor Enabled™ tool.

Figure 1: Surface electrodes placed in three transthoracic pairs and two patient reference sensors, along with other surface electrodes, for an EnSite™ NavX™ Navigation and Visualization Technology, Sensor Enabled™ study.
Impedance Data

Catheter location and navigation of all compatible tools, both conventional and Sensor Enabled™, is based on the impedance field generated by the EnSite™ surface electrodes. When the surface electrodes are connected to the EnSite Precision™ System, an 8 kHz signal is sent alternately through each pair of surface electrodes to create a voltage gradient along each axis, forming a transthoracic electrical field.

Conventional or Sensor Enabled electrophysiology catheters are connected to the EnSite Precision System and advanced to the heart. As a catheter enters the transthoracic field, each catheter electrode senses voltage, timed to the creation of the gradient along each axis (Figure 2). Using the sensed voltages compared to the voltage gradient on all three axes, the EnSite Precision System calculates the three-dimensional position of each catheter electrode for all electrodes simultaneously.

FIGURE 2: Each intracardiac electrode measures voltage along the gradient of each axis

The EnSite Precision™ System displays the located electrodes as catheter bodies with real-time navigation. It permits the simultaneous display of multiple catheter electrodes (Figure 3) and also reflects real-time motion of ablation and diagnostic catheters in the heart. By tracking the position of the catheters, the system enables the creation of 3-D electroanatomical models of the cardiac chambers.

Magnetic Data

When a Sensor Enabled catheter is introduced and EnSite™ NavX™ Navigation and Visualization Technology, Sensor Enabled™ Field Scaling is applied, the EnSite Precision System dynamically optimizes the model by adjusting the dimensions of the navigation field using known offsets between the position and orientation of magnetic sensor(s) and electrodes.

The EnSite Precision System also uses magnetic information as an input for the EnGuide stability monitor to monitor field stability for unexpected changes. This feature can be enabled and used to monitor the location of a Sensor Enabled tool real time within an EnSite™ NavX™ Navigation and Visualization Technology, Sensor Enabled™ field scaled mode.

FIGURE 3: The EnSite Precision™ System displays the catheter bodies in real time
Performance bench testing was conducted to verify the tracking and navigation accuracy of the magnetic navigation and visualization technology utilized in the EnSite Precision™ System.

Accuracy Dynamic Wet Lab Study

This study tested the tracking accuracy and the navigation accuracy of the EnSite™ NavX™ Sensor Enabled™ technology in the EnSite Precision module with the FlexAbility™ ablation catheter, Sensor Enabled™ and the Advisor™ FL circular mapping catheter, Sensor Enabled™.

Testing was performed using a calibrated robotic dynamic wet lab (DWL) to create a 10 cm 3-D geometric cube phantom model using sensor enabled catheter(s) held in an orthogonal fixture (Figure 4). Each catheter movement between 14 horizontal and 10 vertical displacement locations provided multiple electrode measurements during model creation (Figure 5a). Cube models were created using EnSite™ NavX™ Navigation and Visualization Technology, Sensor Enabled™ field scaling in static mode, and in dynamic mode with simulated cardiac (30 – 120 BPM) and respiration (10 – 12 RPM) motion enabled.

System error was calculated based on the differences in measurements between the cube models created by the EnSite Precision System and the known dimensions of the phantom cube geometry (Figures 5b and 6).

Figure 4: DWL fixture showing two FlexAbility™ ablation catheters, Sensor Enabled™ and one Advisor™ FL circular mapping catheter, Sensor Enabled™

Figure 5A (Left) and 5B (Right): DWL a. cube displacement levels and b. measurements of Tracking Accuracy (from position A to position B) and Navigation Accuracy (return to position A)

Figure 6: EnSite Precision™ System display during DWL cube model creation, with automatic EnSite™ NavX™ Navigation and Visualization Technology, Sensor Enabled™ magnetic field scaling enabled

Mean tracking accuracy error was under 0.5 mm and maximum tracking accuracy error was well under the specified maximum of 10% over the 50-mm tested displacement value in both static and dynamic test modes.

Mean navigation accuracy was within 0.4 mm for all catheter electrodes tested using the DWL system, with a maximum error of 0.9 mm, also well below the specified maximum value of 2.0 mm (see Table 1 for details).

Tracking Accuracy was measured as the error between an induced catheter displacement and the corresponding measured displacement, in this case as catheters were displaced by 50 mm from Position A to B. The specified maximum allowable Tracking Accuracy error in a field scaled model is 10%, or 5.0 mm in this test scenario.

Navigation Accuracy was measured as the error in navigating a catheter back to a defined location (i.e., as catheters were then returned to Position A). The specified maximum catheter Navigation Accuracy error is 2.0 mm with a field scaled model.
ACCURACY TEST RESULTS

Table 1: Accuracy of EnSite Precision™ System (v2.0.1) with EnSite™ NavX™ Navigation and Visualization Technology, Sensor Enabled™ Magnetic Field Scaling

<table>
<thead>
<tr>
<th>SENSOR ENABLED™ CATHETERS TESTED</th>
<th>TRACKING ACCURACY ERROR (NO. SAMPLES)</th>
<th>NAVIGATION ACCURACY ERROR (NO. SAMPLES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVISOR™ FL CIRCULAR MAPPING CATHETER, SENSOR ENABLED™ AND FLEXABILITY™ CATHETER, SENSOR ENABLED™ (DWL PHANTOM MODEL)</td>
<td>Dynamic: Mean: 0.44 ± 0.45 mm Max: 2.59%, Min: −4.11% (n = 4032)</td>
<td>Dynamic: Mean: 0.18 ± 0.07 mm Max: 0.38 mm (n = 2688)</td>
</tr>
<tr>
<td></td>
<td>Static: Mean: 0.45 ± 0.49 mm Max: 2.80%, Min: −4.37% (n = 4032)</td>
<td>Static: Mean: 0.34 ± 0.16 mm Max: 0.92 mm (n = 2688)</td>
</tr>
</tbody>
</table>

SUMMARY

Tracking and navigation accuracy are important in advanced cardiac mapping and ablation procedures, such as when it becomes necessary to guide a second ablation catheter to the same location as the first. The accuracy of the EnSite™ NavX™ navigation and visualization technology, Sensor Enabled™ in the EnSite Precision™ System has been verified using dynamic bench testing to provide reliable catheter navigation and localization in electrophysiology procedures.
REFERENCES

Abbott
One St. Jude Medical Dr., St. Paul, MN 55117 USA, Tel: 1 651 756 2000
SJM.com
St. Jude Medical is now Abbott.

Rx Only
Brief Summary: Prior to using these devices, please review the Instructions for Use for a complete listing
of indications, contraindications, warnings, precautions, potential adverse events and directions for use.

™ Indicates a trademark of the Abbott group of companies.
‡ Indicates a third party trademark, which is property of its respective owner.
© 2018 Abbott. All Rights Reserved.
26076-SJM-ENS-0916-0097a(2) | Item approved for global use.